Оглавление
Время чтения: 8 минут
344
В статье мы расскажем о нескольких способах того, как найти расстояние от точки до плоскости, а для лучшего понимания рассмотрим пример на эту тему.
Пусть дана плоскость χ, а в пространстве задана точка M1. Через неё проходит прямая, перпендикулярная нашей χ. H1 обозначим общую точку их пересечения. Отрезок M1H1 является перпендикуляром из M1 к \[χ\]. В обсуждаемом случае H1 есть основание перпендикуляра.
Под расстоянием от точки до плоскости понимают расстояние между этой точкой и основанием перпендикуляра, проходящего через неё к указанной плоскости.
Под расстоянием от точки \[M_{1}\] до плоскости χ понимают длину перпендикуляра, проведённого из \[M_{1}\] к χ. Оно является наименьшим от M1 до любой из точек плоскости.
Докажем это:
Если H2 на χ не совпадает с H1, то мы имеем прямоугольный треугольник M2H1H2. При этом M2H1 есть его катет, а M2H2 гипотенуза. Длина гипотенузы треугольника всегда больше, чем длина катета. Доказательство завершено.
Нет времени решать самому?
Наши эксперты помогут!
Контрольная
| от 300 ₽ |
Реферат
| от 500 ₽ |
Курсовая
| от 1 000 ₽ |
Мы имеем точку M1 в трёхмерном пространстве с декартовыми координатами x1, y1, z1 и плоскость \[χ\]. Покажем, как в этом случае найти расстояние от M1 до \[χ\].
Это следует из теоремы, гласящей, что если в трёхмерном пространстве имеется точка M1(x1,y1,z1) и имеется нормальное уравнение плоскости, которое можно записать в виде cosα * x + cosβ * y + cosγ * z – p = 0, то расстояние от точки до плоскости будет равно
M1H1 = cosα * x + cosβ * y + cosγ * z – p
потому что x=x1, y=y1, z=z1.
Требуется найти расстояние точки \[M_{1}\](-3, √2, -7) до лежащих около неё плоскостей:
Решение:
Статьи по теме
Геометрическая фигура угол: определение угла, измерение углов, обозначения и примеры
744
Длина вектора — основные формулы
4256
Что такое векторное произведение
724
Компланарные векторы и условие компланарности
1034
Расстояние от точки до точки: формулы, примеры, решения
645